What is your actuary thinking?

Hot Topics in Assumptions and Methods

Presented By: Heidi E. Andorfer, FSA, EA, MAAA

AGENDA

- New Public Pension Mortality Tables
- Actuarial Standards of Practice Updates
- Amortization Issues
- Key Takeaways

New Public Table Mortality Tables

NEW PUBLIC PENSION MORTALITY TABLES *Breaking News!!!*

NEW PUBLIC PENSION MORTALITY TABLES Breaking News!!!

- It's the moment we have all been waiting for...
- In January 2019, the Society of Actuaries released its new public pension mortality tables!

I'm so excited.

• The new tables are referred to as Pub-2010

NEW PUBLIC PENSION MORTALITY TABLES Data Collected

- Prior mortality tables had excluded public plan data
- 78 public pension plans submitted data
- Mortality experience collected from calendar years 2008 to 2013
- Data included 46 million life-years of exposure and around 580,000 deaths

NEW PUBLIC PENSION MORTALITY TABLES TABLES PRODUCED

- 94 individual tables were created
 - Three separate job categories Teachers, Public Safety, General Employees
 - Amount-weighted versus headcount weighted
 - Income level Above/below median
 - Subgroups Employees, retirees, contingent survivors, disabled retirees, juveniles

NEW PUBLIC PENSION MORTALITY TABLES TABLES PRODUCED

- The full set of all public plan mortality tables produced in the study is denoted Pub-2010
 - Individual table names indicate job classification
 - PubT-2010 for Teachers
 - PubS-2010 for Public Safety
 - PubG-2010 for General Employees
 - Headcount-weighted tables are indicated with an ".H"
 - Tables based on above and below median amount (salary or pension amount) are indicated with an "A" or "B"
 - For example:
 - PubG-2010 : Amount-weighted General Employees
 - PubT.H.-2010(B): Headcount weighted below-median Teachers

- The report compares various annuity calculations under the new tables to mortality tables currently being used
 - Amount-weighted tables on following pages are from the report
- Deferred to age 62 annuities
 - Discount rate of 7% before age 62 and 5% after age 62
 - Approximates a 2% COLA
 - Scale MP-2017 fully generational projections for all tables other than RP-2000 (Scale BB)
 - Does not necessarily translate to liability increases if currently using RP-2014 tables

• Annuity Comparisons – Teachers

		Monthly Deferred-to-62 Annuity Due Values				Percentage Change of Moving to		
		Generational @ July 1, 2018				PubT-2010 (with MP-2017) from:		
	Base Rate → RP-2000 RP-2006 RP-2006 WC PubT-2010		RP-2000	RP-2006	RP-2006 WC			
	Proj. Scale \rightarrow	BB	MP-2017	MP-2017	MP-2017	BB	MP-2017	MP-2017
	Age 25	1.1735	1.1671	1.1960	1.2406	5.7%	6.3%	3.7%
Females	Age 35	2.2720	2.2594	2.3191	2.4113	6.1%	6.7%	4.0%
	Age 45	4.4101	4.3812	4.5028	4.6932	6.4%	7.1%	4.2%
	Age 55	8.6263	8.5443	8.7849	9.1655	6.3%	7.3%	4.3%
	Age 65	13.0772	12.9595	13.3331	13.9245	6.5%	7.4%	4.4%
	Age 75	9.8517	9.6858	10.0300	10.5286	6.9%	8.7%	5.0%
	Age 85	6.3586	6.0423	6.2543	6.6215	4.1%	9.6%	<i>5.9%</i>
Males	Age 25	1.1220	1.0994	1.1543	1.1867	5.8%	7.9%	2.8%
	Age 35	2.1668	2.1251	2.2369	2.3018	6.2%	8.3%	2.9%
	Age 45	4.1995	4.1143	4.3391	4.4721	6.5%	8.7%	3.1%
	Age 55	8.2051	8.0345	8.4670	8.7317	6.4%	8.7%	3.1%
	Age 65	12.3695	12.2340	12.8373	13.2171	6.9%	8.0%	3.0%
	Age 75	8.9093	8.9690	9.4431	9.7232	9.1%	8.4%	3.0%
	Age 85	5.3409	5.4378	5.6904	5.8822	10.1%	8.2%	3.4%

• Annuity Comparisons – Public Safety

		Monthly Deferred-to-62 Annuity Due Values				Percentage Change of Moving to		
		Generational @ July 1, 2018				PubS-2010 (with MP-2017) from:		
Base Rate → RP-2000 RP-2006 RP-2006 W		RP-2006 WC	PubS-2010	RP-2000	RP-2006	RP-2006 WC		
	Proj. Scale \rightarrow	BB	MP-2017	MP-2017	MP-2017	BB	MP-2017	MP-2017
	Age 25	1.1735	1.1671	1.1960	1.1820	0.7%	1.3%	-1.2%
Females	Age 35	2.2720	2.2594	2.3191	2.2919	0.9%	1.4%	-1.2%
	Age 45	4.4101	4.3812	4.5028	4.4517	0.9%	1.6%	-1.1%
	Age 55	8.6263	8.5443	8.7849	8.6740	0.6%	1.5%	-1.3%
	Age 65	13.0772	12.9595	13.3331	13.0713	0.0%	0.9%	-2.0%
	Age 75	9.8517	9.6858	10.0300	9.7245	-1.3%	0.4%	-3.0%
	Age 85	6.3586	6.0423	6.2543	6.1480	-3.3%	1.8%	-1.7%
	Age 25	1.1220	1.0994	1.1543	1.1330	1.0%	3.1%	-1.8%
	Age 35	2.1668	2.1251	2.2369	2.1949	1.3%	3.3%	-1.9%
Males	Age 45	4.1995	4.1143	4.3391	4.2582	1.4%	3.5%	-1.9%
	Age 55	8.2051	8.0345	8.4670	8.2939	1.1%	3.2%	-2.0%
	Age 65	12.3695	12.2340	12.8373	12.4434	0.6%	1.7%	-3.1%
	Age 75	8.9093	8.9690	9.4431	8.9533	0.5%	-0.2%	-5.2%
	Age 85	5.3409	5.4378	5.6904	5.3471	0.1%	-1.7%	-6.0%

• Annuity Comparisons – General

		Monthly Deferred-to-62 Annuity Due Values				Percentage Change of Moving to		
		Generational @ July 1, 2018				PubG-2010 (with MP-2017) from:		
Base Rate → RP-2000 RP-2006 RP-2006 WC Pub		PubG-2010	RP-2000	RP-2006	RP-2006 WC			
	Proj. Scale \rightarrow	BB	MP-2017	MP-2017	MP-2017	BB	MP-2017	MP-2017
	Age 25	1.1735	1.1671	1.1960	1.2085	3.0%	3.5%	1.0%
	Age 35	2.2720	2.2594	2.3191	2.3444	3.2%	3.8%	1.1%
les	Age 45	4.4101	4.3812	4.5028	4.5554	3.3%	4.0%	1.2%
Fema	Age 55	8.6263	8.5443	8.7849	8.8853	3.0%	4.0%	1.1%
	Age 65	13.0772	12.9595	13.3331	13.4541	2.9%	3.8%	0.9%
	Age 75	9.8517	9.6858	10.0300	10.0760	2.3%	4.0%	0.5%
	Age 85	6.3586	6.0423	6.2543	6.2831	-1.2%	4.0%	0.5%
	Age 25	1.1220	1.0994	1.1543	1.1344	1.1%	3.2%	-1.7%
	Age 35	2.1668	2.1251	2.2369	2.1955	1.3%	3.3%	-1.9%
S	Age 45	4.1995	4.1143	4.3391	4.2605	1.5%	3.6%	-1.8%
Male	Age 55	8.2051	8.0345	8.4670	8.3168	1.4%	3.5%	-1.8%
	Age 65	12.3695	12.2340	12.8373	12.5732	1.6%	2.8%	-2.1%
	Age 75	8.9093	8.9690	9.4431	9.1604	2.8%	2.1%	-3.0%
	Age 85	5.3409	5.4378	5.6904	5.5437	3.8%	1.9%	-2.6%

- Example of Impact on Representative Article 4 Fund
 - PubS-2010 mortality projected with MP-2017
 - RP-2000 BC mortality projected with Scale BB
 - Assuming same 7.00% interest rate as the sample annuity factors

			Increase for
	RP-2000 BC	PubS-2010	PubS-2010
Accrued Liability			
Projected to Valuation Date	33,211,880	34,313,166	3.3%
Projected 5 Years Past Valuation Date	33,567,981	34,513,978	2.8%
Generational Projection	34,646,816	35,382,672	2.1%
Normal Cost			
Projected to Valuation Date	675,588	698,052	3.3%
Projected 5 Years Past Valuation Date	680,842	701,034	3.0%
Generational Projection	707,916	722,685	2.1%

NEW PUBLIC PENSION MORTALITY TABLES *Other Considerations*

- Actuarial Standards of Practice (ASOP) Considerations
 - Mortality tables should be projected with appropriate mortality improvement scale
 - MP-2018 is most recent but each update since MP-2014 has lowered improvement expectations
 - All relevant population characteristics should be considered (job category, income level, etc.)
 - Different tables for different participant subgroups

NEW PUBLIC PENSION MORTALITY TABLES Predictions

- Most public plans will migrate towards one of these new tables
- Most plans will see increases in liabilities and contribution requirements
 - Teachers plans will likely see largest increases
 - Public safety plans will be surprised...but will also see increases
 - General employees plans also will see higher costs

Actuarial Standards of Practice Updates

- ASOP 51 Assessment and Disclosure of Risk Associated with Measuring Pension Obligations and Determining Pension Plan Contributions
 - Adopted by the Actuarial Standards Board in September 2017
 - Effective on November 1, 2018
 - Applies to funding and pricing valuations

- Analysis of Issues and Recommended Practices
 - Identify the risks to be assessed
 - Investment risk
 - Asset/liability mismatch risk
 - Interest rate risk
 - Longevity and other demographic risks
 - Contribution risk
 - Assess the risk
 - Numerical calculations are not required

- Analysis of Issues and Recommended Practices (cont.)
 - Methods for assessment of risk
 - Scenario tests
 - Sensitivity test
 - Stochastic modeling
 - Stress tests
 - Comparison to an actuarial present value based on minimal-risk investments
 - Assumptions for assessment of risk
 - The actuary should recommend a more detailed assessment if it would be significantly beneficial for the intended user to understand the risks

- Analysis of Issues and Recommended Practices (cont.)
 - Plan maturity measures
 - Ratio of market value of assets to active payroll
 - Ratio of retiree accrued liability to total accrued liability
 - Ratio of cash flows to market value of assets
 - Ratio of benefit payments to contributions
 - Duration of the accrued liability

- Analysis of Issues and Recommended Practices (cont.)
 - Historical information
 - Funded status
 - Gains and losses
 - Actuarially determined contribution
 - Normal cost
 - Reliance on a separate report
 - Risk assessed by another party like an investment advisor

- Proposed Revisions to ASOP 4 Measuring Pension Obligations and Determining Pension Plan Costs or Contributions
 - Exposure draft issued in March 2018
 - Comment period ended on July 31, 2018

- Exposure Draft Adds "Investment Risk Defeasement Measure" section
 - More commonly know as a Market Value of Liability requirement
 - If performing a funding valuation, the actuary should disclose the cost of effectively defeasing the investment risk of the plan
 - Calculation based on U.S. Treasury yields or rates at which the pension obligation can effectively be settled
 - Unlike all other ASOPs, this addition prescribes an actuarial assumption
 - A disclosure item so it would not change the contribution requirements to the plan

- Exposure Draft Adds "Investment Risk Defeasement Measure" section (cont.)
 - It would create confusion since the actuary would be providing results based on a separate measure
 - Is not required in the risk ASOP (ASOP 51)
- Adds requirement for actuary to disclose a reasonable actuarially determined contribution
 - Calculated based on an amortization method with no negative amortization or one that is paid off in a reasonable time period
 - Not based on market value of liabilities

Amortization Issues

AMORTIZATION ISSUES *Amortization Defined*

- The actuarial cost method determines the actuarial accrued liability.
- In the actuarial valuation, the accrued liability is compared to the actuarial value of assets.
- If the accrued liability is larger, unfunded liabilities exist and need to be paid down, similar to a mortgage.
- Currently, the amortization period in Illinois Pension Code ends in 2040 (target is 90% of accrued liability).

- Many considerations when selecting an amortization method:
 - Length of the amortization period?
 - Open (rolling) or closed amortization?
 - Level dollar or level percentage of payroll basis?
 - If level percentage basis, what is the payroll growth assumption?
 - Single base or layered approach?

- Length of amortization period?
 - Typically, funds rely on the Illinois Pension Code.
 - Currently, the amortization period is through the year 2040.
 - This is an arbitrary date arrived at through the political process.
 - Amortization periods that end at an arbitrary date can be dangerous.
 - The plan is going to be around for a lot longer than this "end date."
 - This date is often pushed back without any consideration of the effect on the plan or the municipality.
- Increasing contributions and volatility as you approach the end of the amortization period will be difficult for the municipality to manage.

AMORTIZATION ISSUES *AMORTIZATION METHOD SELECTION*

- Open (rolling) or closed amortization?
 - An amortization with a finite period is called a closed amortization.
 - 2040 is a closed amortization.
 - Or is it?!?! The date will be moved at some point in the future.
 - An open amortization is one that always uses the same number of years.
 - For example, IMRF is going to an open 15 year amortization.
 - Opponents do not like it because it does not get you to 100% by any specific date.

- Level dollar or level percentage of payroll basis?
 - The level dollar approach produces an amortization payment that is always the same amount.
 - Becomes a smaller percentage of payroll over time.
 - The level percentage of payroll produces a payment stream that is designed to increase based on the expected growth in payroll.
 - Payments start out smaller and increase over time.
 - The actuary uses a payroll growth assumption to determine the payment pattern; the higher the assumption, the more the payment will increase over time.
 - The current payment is less than the level dollar approach since future payments get larger each year.
 - The level dollar method is the same as the level percentage approach with a 0% payroll growth assumption.

- Level dollar or level percentage of payroll basis?
 - The higher the payroll growth assumption, the more likely that negative amortization will exist.
 - Negative amortization occurs when the annual amortization payment is less than the interest accruing on the unfunded liability.
 - This often leads to an increase in the unfunded liability for the first several years of the amortization schedule before any of this past service debt is paid down.
 - A funding policy based on perpetual negative amortization is a recipe for disaster

- Single base or layered approach?
 - Most plans in Illinois reamortize the unfunded liability over a fixed number of years each valuation
 - Many municipalities outside of Illinois set up a new layer each year for any changes in the unfunded liability
 - The example below illustrates a plan that began a layered approach as of 5/1/2016 and amortizes assumption changes over 20 years and gain/loss over 10 years.

	Date	Years	5/1/2018	Amortization
Base	Established	Remaining	Amount	Amount
Initial Unfunded	5/1/2016	18	12,568,745	946,703
Assumption Change	5/1/2017	19	1,023,541	74,277
Actuarial Loss (Gain)	5/1/2017	9	(523,657)	(67,436)
Assumption Change	5/1/2018	20	(625,985)	(43,883)
Actuarial Loss (Gain)	5/1/2018	10	1,563,254	184,456
			14,005,898	1,094,117

AMORTIZATION ISSUES

PAYROLL GROWTH ASSUMPTION AND NEGATIVE AMORTIZATION

- The payroll growth assumption determines how unfunded liabilities are paid off.
- Example 30-Year Amortization
 - Unfunded Actuarial Liability = \$10,000,000
 - Interest Rate = 6.50%

Payroll Growth Rate	UAL Payment (1 st year)
0% (Level \$)	\$719,037
1%	\$648,601
2%	\$581,886
3%	\$519,150
4%	\$460,600

AMORTIZATION ISSUES *Payroll Growth Assumption and Negative Amortization*

• How do the amortization payments change over the 30-year period with various payroll growth assumptions?

AMORTIZATION ISSUES

PAYROLL GROWTH ASSUMPTION AND NEGATIVE AMORTIZATION

• What happens to the unfunded liabilities under various payroll growth assumptions?

AMORTIZATION ISSUES *Considerations*

- Each municipality should select its own amortization approach rather than relying on pension legislation from Springfield.
- Need to consider how all of the factors work together and select those that will help you succeed.
 - Cannot cherry pick the "cheapest" approach from each category.
- Once you have made a selection, stick with it and do not change the rules along the way.
 - Changing the rules will set you up for failure.

Key Takeaways

KEY TAKEAWAYS

- The new mortality tables will likely affect my Fund in the near future
 - Determine the magnitude of the change in liabilities
- There are changes to the Actuarial Standards of Practice that may confuse the readers of our valuation report
 - What steps do we need to take to minimize confusion?
- Is our amortization method causing our unfunded liability to grow uncontrollably?

Questions?

Heidi E. Andorfer, FSA, EA, MAAA heidi.andorfer@foster-foster.com

(630) 620-0200